

A Bioeconomic Model of the Recreational Gulf of Maine Cod and Haddock Fishery

Min-Yang Lee¹, Scott Steinback¹, and Kristy Wallmo²

¹NOAA Fisheries, Northeast Fisheries Science Center, Woods Hole, MA ²NOAA Fisheries, Office of Science and Technology, Silver Spring, MD

Policy/Research Questions

 How will changes in management measures alter angler fishing effort, angler welfare, recreational fishing mortality, and stock levels of Atlantic cod and haddock in the Gulf of Maine?

 What combination of management measures can achieve conservation objectives?

Outline

- Economic sub-model
- Biological sub-model
- Coupled model
- Simulation process

Model Overview

"Biological" Sub-Model Expected and actual Fish kept and released are a function of length structure, encounters of fish on a Economic Sub-Model selectivity, regulations trip Estimate a behavioral model for recreational anglers Simulate angler behavior under alternative stock structures and regulations Effort Retained Discards Welfare Aggregate and project stocks of fish

Economic Sub Model

Stated Preference Choice Experiment Survey

Add-on to NMFS' MRFSS Survey in 2009 (ME-NJ)

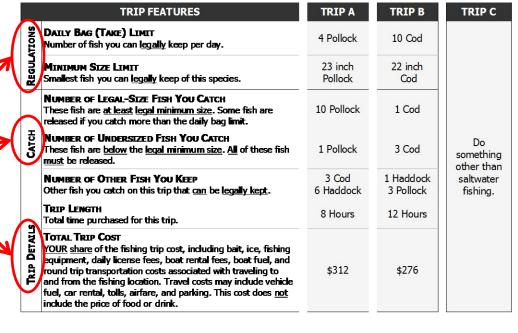
Voluntary mail follow-up

Dillman surveying approach

Groundfish Choice Experiment Survey

Five Components

- Description of study
- A species information page
- Screener questions familiarity and avidity
- CE questions
- Demographic questions


8x per surve

Vary these

attributes

SECTION B: SALTWATER FISHING TRIPS

Please compare Trip A, Trip B, and Trip C in the table below, then answer questions 1 and 2. Compare only the trips on this page. Do not compare these trips to trips on other pages in this survey. Assume that the trips below are identical in every way except for the features listed in the table. All regulations remain as they are today unless otherwise noted in the table below.

	-					•					•	
TRIP A	DISLIKE	1	2	3	4	5	6	7	8	9	10	LIKE
TRIP B	DISLIKE	1	2	3	4	5	6	7	8	9	10	LIKE
TRIPC	DISLIKE	1	2	3	4	5	6	7	8	9	10	l IKE

Please rate the trips listed in the table above. (Circle the number that reflects your opinion best.)

1 I like this trip best:

(Please mark the **ONE** option **YOU** like best with a \square or \square)

Attributes and Levels in CE

Attribute Level

Bag limits 2, 4, 8, 10

Size limits:

Cod 18", 20", 22", 23", 24", 26

Haddock 12", 16", 17", 19", 21", 22"

Pollock 17", 19", 20", 21", 23", 26"

Number of legal sized fish 1, 3, 6, 10

Number of undersized fish 1, 3, 6

Number of other fish 1, 3, 6, 10

Trip length (hours) 2, 4, 6, 8, 10, 12

Shore mode trip cost (\$/trip) \$15, \$35, \$60, \$90, \$120, \$150

All other modes trip cost:

Hourly trip cost (\$/hr.) \$15, \$35, \$60, \$90

Total trip cost \$30-\$1080

(\$/trip=\$/hr. x # hrs.)

Many Possible Combinations

Experimental design literature (Kuhfeld)

26 Unique Surveys D-efficiency Score ~73

Response Rates by State and Residency

		Resident	Non- resident	Total	Completion
Intercept State	Mailed	Completed	Completed	Completed	Rate
Maine	265	67	58	125	47%
Massachusetts	1238	272	168	440	36%
New Hampshire	536	124	66	190	35%
New Jersey	1421	310	124	434	31%
New York	725	157	7	164	23%
Connecticut	34	10	3	13	38%
Rhode Island	358	48	77	125	35%
Total	4,577	988	503	1,491	33%

Behavioral Model

Indirectly affected by bag and size limits

$$U_{jn} = \beta_1 \sqrt{E[codkept]_{jn}} + \beta_2 \sqrt{E[codreleased]_{jn}} + \beta_3 \sqrt{E[haddockkept]_{jn}} + \beta_4 \sqrt{E[haddockreleased]_{jn}} + \beta_5 [(tr.leng.)_{jn} xfor - hire_n) + \beta_6 [(tr.leng.)_{jn} xfor - hire_n]^2 + \beta_7 (opt - out)_{jn} + \beta_8 (trip cost)_{jn} + \varepsilon_{jn}$$

Behavioral Model Parameters

Parameter	Estimate	Standard Error	t value	Pr > t
$\sqrt{cod\ kept}$	0.3243	0.0342	9.48	<0.0001
$\sqrt{cod\ released}$	0.0943	0.0232	4.06	<0.0001
$\sqrt{haddockkept}$	0.3195	0.0317	10.08	<0.0001
$\sqrt{haddock released}$	0.1063	0.0274	3.88	0.0001
Trip length x For-hire	0.0743	0.0288	2.58	0.0100
(Trip length) ² x For-hire	-0.003240	0.002035	-1.59	0.1114
Trip cost	-0.005392	0.000209	-25.84	< 0.0001
Opt-out	-0.2742	0.1336	-2.05	0.0401
Likelihood Ratio	1,750.1			
No. Obs.	4,308			
No. Cases	14,233			

$$mwtp_{\#codkept} = \frac{\beta_1(\frac{1}{2}(\#cod\ kept)^{-\frac{1}{2}})}{\beta_8}$$

Behavioral Model Summary

 Model estimates how changes in expectations (mainly catch expectations) affects the value of a fishing trip

But what changes expectations about kept and released fish?

Regulations, stock structure, other factors

Behavioral Model Limitations

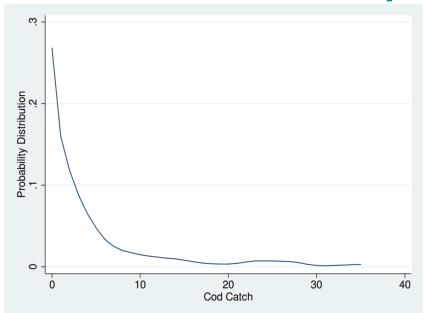
 No explicit link between changes in regulations and expected catch in behavioral model

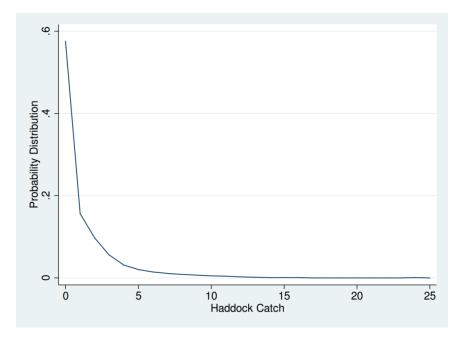
No consideration of stock structures

 Results are not explicitly linked to changes in numbers of trips per season (i.e., effort shifts)

Model Overview

"Biological" Sub-Model Expected and actual Fish kept and released are a function of length structure, encounters of fish on a Economic Sub-Model selectivity, regulations trip Estimate a behavioral model for recreational anglers Simulate Angler behavior under alternative stock structures and regulations Effort Retained Discards Welfare Aggregate and Project stocks of fish




In the "Biological" Sub-Model:

- Generate expectations about catch:
 - Encounters-per-trip
 - Length of encounters-per-trip
 - Length structure of fish in the ocean
 - Size selectivity of anglers

Encounters-Per-Trip

- The distribution of encounters-per-trip derived from MRIP (2012)
 - Encounters=Kept+ Discard
 - Trips that targeted or caught GOM cod or haddock
- Lots of zeros
 - Approx 25% of trips do not encounter a cod
 - Nearly 60% of trips do not encounter a haddock

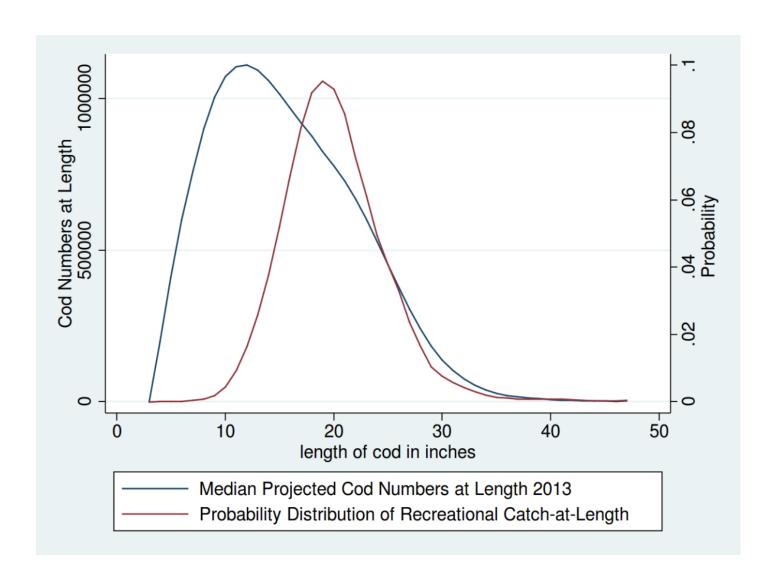
Length Distribution of Encounters

 What is the length-distribution of fish encountered by recreational anglers?

Pair with bag, size

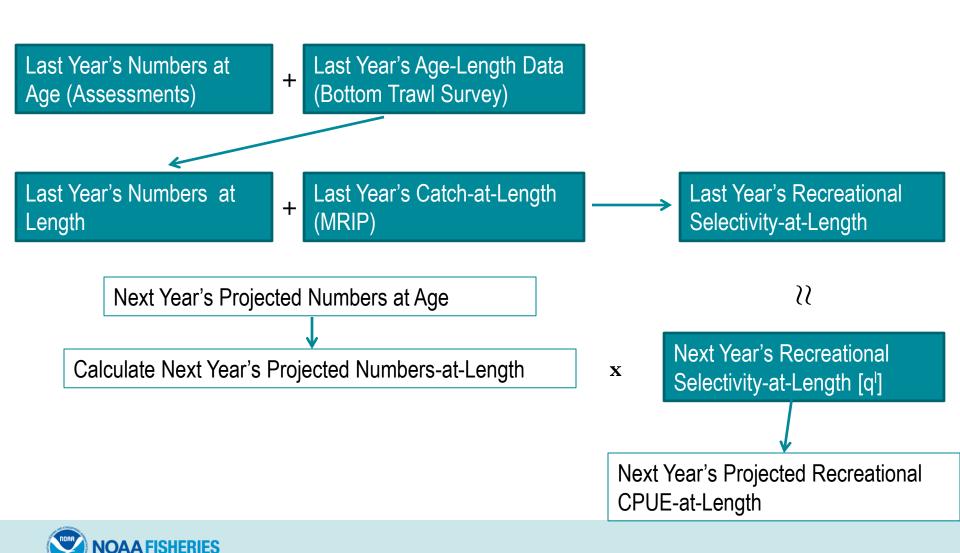
limits to determine how many fish are kept and released.

- Not the same as:
 - Length distribution of stock


Doesn't account for targeting behavior

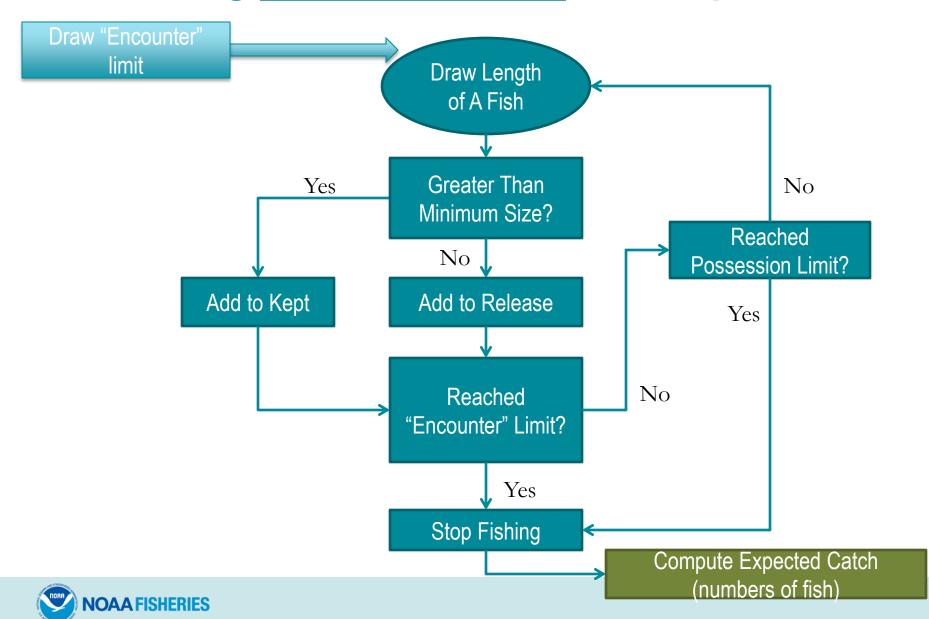
Length distribution of historical catch

Doesn't account for changing stock conditions

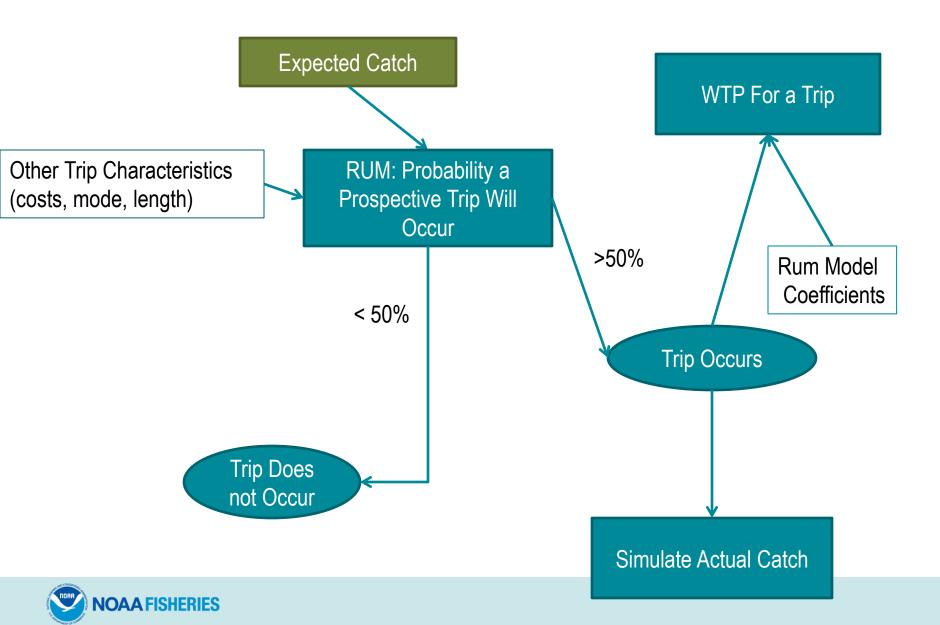


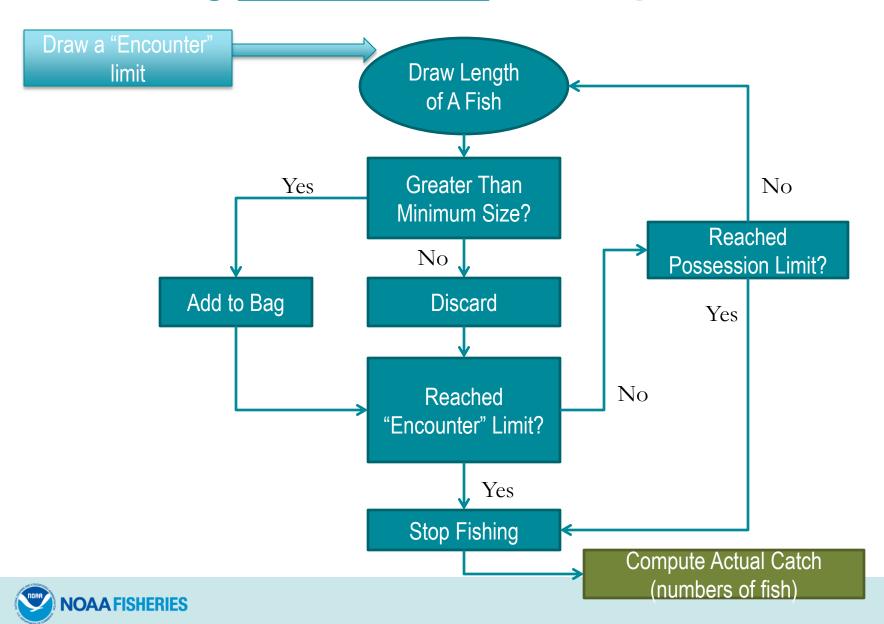
Recreational Selectivity and Catch-at-length

Combining Stock Assessment and Recreational Catch data



Model Overview


"Biological" Sub-Model Expected and actual Fish kept and released are a function of length structure, encounters of fish on a Economic Sub-Model selectivity, regulations trip Estimate a behavioral model for recreational anglers Simulate Angler behavior under alternative stock structures and regulations Effort Retained Discards Welfare Aggregate and Project stocks of fish


Simulating *Expected Catch* for a Trip

The Participation Decision

Simulating *Actual Catch* for a Trip

Weights of Kept and Released Fish

 Compute weights of kept and released fish on each simulated trip from length-weight equations used in the assessments

Simulating Over Entire Fishing Year

- The algorithm simulates trips until the maximum number of potential trips is reached
- Potential Trips?
 - Set a number for potential trips that is large enough so that it is not binding if the fishery becomes more desirable, but is not unrealistic

Calibration

- Use possession and size limits in effect for 2012.
- Adjust number of "potential trips" until estimated trips predicted to occur = MRIP actual trips.

	MRIP FY2012	Model Predictions FY2012	Difference
Potential Trips	N/A	408,000	
Trips	164,684	165,853	0.7%
Cod Kept	274,000	283,506	3.4%
Cod Released	454,371	469,161	3.2%
Total Cod	728,371	752,667	3.2%
Haddock Kept	144,145	119,508	-20.6%
Haddock Released	176,748	245,575	28.0%
Total Haddock	320,893	365,083	12.1%

FY2013 Simulation Results

Cod Bag	Haddock Bag	Cod Min	Haddock Min	Trips (Median)	% Under Cod ACL (out of 100 trials)	% Under Haddock ACL (out of 100 trials)	Cod Mortality lbs (Median)	Haddock Mortality lbs (Median)
9	None	19	18	153,549	65	11	997,888	337,692
9	None	19	20	141,586	77	42	926,307	182,669
9	None	19	21	136,622	82	63	902,304	126,264

Good news: No changes needed for Cod.

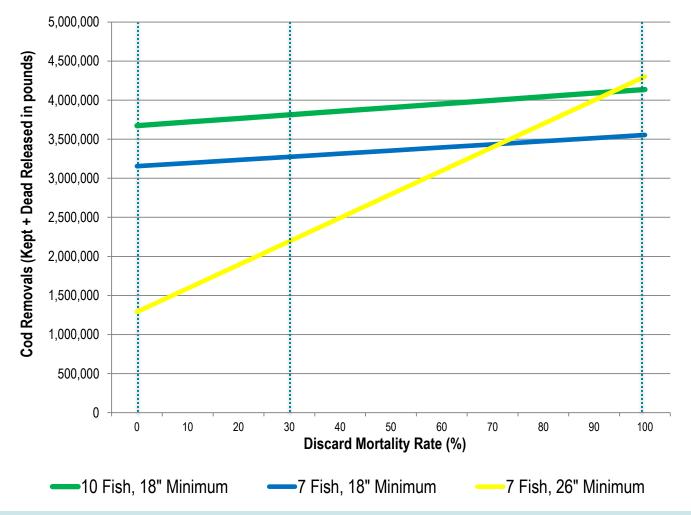
Bad News: 21" minimum size needed for haddock mortality to remain below 74mt (~163,000 lbs).

Important Assumptions

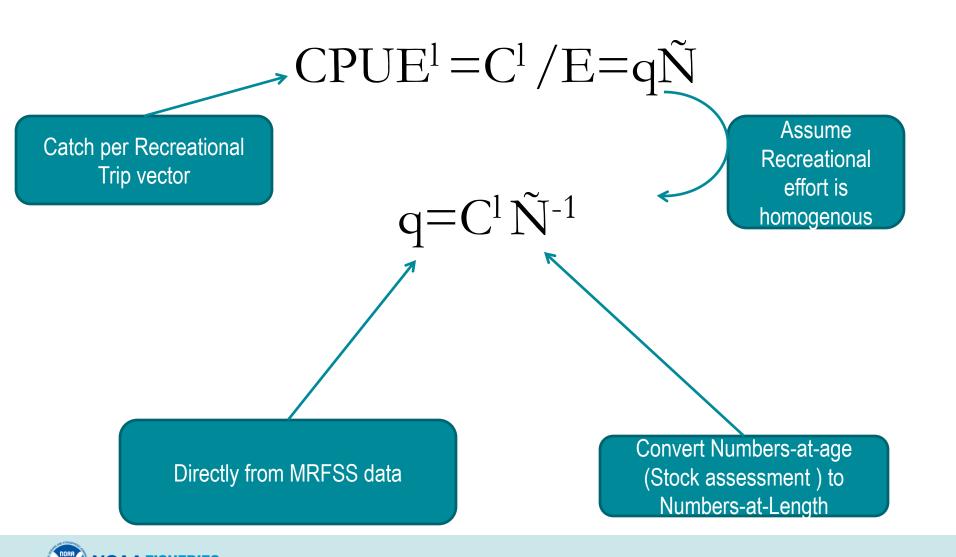
- No heterogeneity in catch rates across fishing modes
- Anglers stop fishing for either species when they hit the "assigned encounter limit" or the bag limit
- No recreational high-grading
- No illegal retention* (too small, over bag limit)

Extensions

- Retention of sub-legal fish
- Retention of more fish than possession limit


- Medium term projections:
 - Given a discard mortality assumption, we can compute numbers-at-age of harvested cod and haddock
 - Project stocks/biomass a few years into the future

Questions?



Outcomes of some policies are very sensitive to discard mortality

The Catch-at-length Equation

